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collection and Rietveld analysis have
been extremely successful in providing
structural information on a vast range of
materials, there is often uncertainty about
the true accuracy of the derived structural
parameters. In this paper, we discuss

a number of topics concerning data
collection and the statistics of data
analysis. We present a simple new
function, the cumulative chi-squared
distribution, for assessing regions of mis-
fit in a diffraction pattern and introduce

a matrix which relates the impact of
individual points in a powder diffraction
pattern with improvements in the
estimated standard deviation of refined

data collection. Data analysis issues are
discussed within the framework of maxi-
mum likelihood, which incorporates the
current least-squares strategies but also
enables the impact of systematic uncer-
tainties in both observed and calculated
data to be reduced.
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1. Introduction

We can improve the quality of the structural results
obtained from a powder diffraction pattern by a number
of means. Firstly and most importantly, sufficient
care should be taken in performing a good experiment
and the observed diffraction data should be as free
from systematic errors as possible. Due attention
should be given to all parts of the diffraction pattern.
The relative importance of, for example, low- and
high-angle regions of a diffraction pattern should
be assessed before performing the experiment and
consideration paid to the balance of data collection
statistics across the diffraction pattern. With structure
solution and refinement from x-ray powder diffraction
data, we stress the importance of a variable counting
scheme that puts substantially increased weight on the
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high-angle reflections and explain why over-counting
low-angle reflections can be deleterious to obtaining
accurate structural parameters.

After determining the best data collection protocol,
the next consideration for obtaining good quality
structural results is ensuring that the calculated
diffraction pattern is modelled well. For example,
a good understanding of the profile line shape
through a fundamental parameters technique pays
dividends in obtaining a good fit to the Bragg peak
shape.

On first thought, it might be expected that the
combination of a careful experiment followed by
careful modelling of the diffraction data is all that
needs be considered to obtain good structural informa-
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tion. However, there is an important third facet that is
rarely actively considered and indeed generally taken
for granted—the algorithm behind fitting the model to
the data. We generally assume that least-squares analy-
sis is sufficient and indeed it is often so. However,
least-squares is usually employed "because that's the
way it has always been done" rather than because of a
positive consideration of its applicability. This mirrors
the experimental situation mentioned earlier where
constant-time data-collection approaches are still often
preferred over variable counting-time strategies despite
the fact that it has been known for at least a decade that
the latter procedure gives better, more accurate results
for x-ray powder diffraction data [1,2].

The underlying principles of probability theory
indicate that least-squares analysis is appropriate only
if (i) the data points have an associated Gaussian error
distribution and (ii) the proposed model is a complete
representation of the observed data. Although these
conditions appear to be rather restrictive, they are
nevertheless broadly satisfied in most Rietveld analy-
ses. One exception to standard least-squares analysis
that was discussed several years ago is the situation
where the counts per data point are low (<20) and
followed a Poisson rather than a Gaussian distribution.
Antoniadis et al. showed that a maximum likelihood
refinement with due account given to Poisson counting
statistics was the correct approach [3]. Indeed, maxi-
mum likelihood and Bayesian probability theory offer
the correct formalism for considering all data and
model uncertainties; least-squares analysis is just one,
albeit relatively general, instance of maximum likeli-
hood. Careful consideration of the physical origins of
uncertainties in either data errors or insufficiencies in
the structural model leads to probability distribution
functions that must be optimised through maximum
likelihood methods.

The fundamental statistics approach that looks for a
physical understanding of the uncertainties in a powder
diffraction pattern is in many ways analogous to the
fundamental parameters approach used in peak shape
analysis. Both methods of analysis lead to more reliable
results. In this paper, several applications of maximum
likelihood that go beyond least-squares analysis are
discussed. These include dealing with unknown
systematic errors in the data, unattributable impurity
phases and incomplete structural model descriptions.
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2. Assessing the Quality of a Rietveld
Refinement

Before considering how we can optimise our chances
of success using improved data collections methods or
alternative statistical approaches, it is worth bench-
marking the statistical quality of the Rietveld fit to a
powder diffraction pattern. The conventional goodness-
of-fit quantities used in the Rietveld method are the
standard R-factors and y* quantities. The following
four R-factors are generally quoted in most Rietveld
refinement programs:

expected R-factor:

(1a)

Ry =\/(N—P+C)/(iw-yf)

i=

weighted profile R-factor:

R =J[iw(yi—Mi)2 ]/( wyf) (1t

profile R-factor:

Bragg R-factor:

R, = \/{%‘1(1;"5—1;“ )2 J/[EN“(I;;“ )ZJ (1d)

(Ic)

The expected R-factor is basically as good as the
weighted profile R-factor can get since the weighted
sum of the squares of the difference between observed

and calculated profile values, Sw(n-M), can at
best be equal to the number of independent data,
(N-P+C), in the diffraction pattern since each weighted
squared profile difference in a best fit to the data should
be equal to unity. In a standard x-ray powder diffraction
pattern, the weight, w;, is equal to 1/y;,. Since N is
generally much larger that either P or C, then the
expected profile R-factor can be rewritten as

](2)

N N
REZ\/(N—P+C)/[ Wl.inJz\/N/(ny/yi
=1 i=1

=1/ J(<>).
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The expected profile R-factor is thus equal to the
reciprocal of the square root of the average value of the
profile points. A small expected profile R-factor is
simply a statement about quantity and means that the
average number of counts in a profile is large—it bears
no relationship to the quality of a profile fit. In particu-
lar, if the diffraction pattern consists of weak peaks on
top of a high background, then the expected R-factor
can be very low. For an average background count of
10 000, for example, the expected R-factor will be 1 %
or lower irrespective of the height of the Bragg peaks.
This has led to a preference for quoting background-
subtracted (b-s) R-factors,

(b-s) expected R-factor:

(bs)E=\/(N P+C)/[2W(J’l bz)zj

(3a)
(b-s) weighted profile R-factor:

el [0 )

The (b—s) expected R-factor gives a much more
realistic measure of the quality of the data

=1/ (y=b)*/y] ) and the (b-s) weighted

R-factor to both the quality of the data and the quality
of the fit to the data. However, even still there are
caveats. Very fine profile steps in a diffraction pattern
lead to higher expected R-factors. For a given diffrac-
tion pattern, doubling the step size (i.c., grouping points
together in pairs) will lead to an expected R-factor that
is roughly /2 smaller than before. Additionally,
R-factors may also be quoted for either the full profile
or only those profile points that contribute to Bragg
peaks. In themselves, therefore, profile R-factors
treated individually are at best indicators of the quality
of the data and the fit to the data. However, the ratio of
weighted profile to expected profile R-factors is a good
measure of how well the data are fitted. Indeed, the
normalised ) ? function is simply the square of the ratio
of R, and R,

(b -s)E

=S w0y - M) (NP +O) =
i=1 (4)
(pr /RE)2 = (R(b-s)wp / Rb-s)g )2

(Note that the R-factor ratio holds whether or not the
background has been subtracted in the calculation of

109

the R-factor. The ) ? value will change, however, if only
those points that contribute to Bragg peaks are consid-
ered instead of the full diffraction pattern.)

Bragg R-factors are quoted as an indicator of the
quality of the fit between observed and calculated
integrated intensities. It has been shown that the correct
integrated intensity R-factor can be obtained from a
Pawley or Le Bail analysis [4] where the extracted
"clumped" integrated intensities, (J,) =2 (I,), are
matched against the calculated "clumped" intensities,
J,= X 1,, through the following equations:

expected R-factor:

(I)Fz\/(Nlump N+C)/[Z 2 lr/{(Jlr)(Jk)J (5&)

R-factor:

|5 5

> W0, )(Ju)

~ U, )]) [

where a "clump" is a group of completely overlapped
reflections and the weight matrix W), is the associated
Hessian matrix from the Pawley analysis. It is easily
shown that

(5b)

Wy =2 p(x, = %) p(x = %)

where p (x~x,) is the normalised peak shape for reflec-
tion & which is situated at x, These weights are calcu-
lated as part of the Pawley analysis but are easily
calculated independently and therefore the above
R-factors may also be derived from a Le Bail analysis.
The integrated intensities ) ? is again simply the square
of the ratio of weighted and expected R-factors:

2 z /7/[']/ (Jh)] (J/()]/(Nclu|np_N\’+CX) (6)

=(R, /R([)E) .

There is a strong argument that the estimated
standard deviations of the structural parameters
obtained from a Rietveld analysis should be multiplied
by the square root of this y * function rather than, as is
conventional, the square root of the Rietveld y % This
usually leads to an additional inflation of between a
factor of 2 and 4 for the estimate of the standard
deviations of the structural parameters [4].
Interestingly, y * can be evaluated indirectly from a
combination of Rietveld and Pawley analyses on a
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dataset. Within statistical errors the numerator of the
Rietveld y ? function (i.e., the unnormalised Rietveld y 2
function) is equal to the sum of the unnormalised
Pawley and integrated intensity y > functions [4], i.e.,

Zwi(yi _MiR)z EZWl(yl _MP)Z +
i i (7)

Notump

>

h=1

Netump

2 Wl =D, = ()]

In this section, we have shown that there are a
plethora of R-factors and y * functions that may be used
to evaluate the quality of and the quality of fit to a
powder diffraction pattern. Probably the most useful set
of quantities to use are the following:

e the background-subtracted, expected profile
R-factors evaluated over (a) full profile and
(b) Bragg peaks only (two quantities)

e the background-subtracted, weighted profile
Rietveld and Pawley (or Le Bail) R-factors
evaluated over (a) full profile and (b) Bragg peaks
only (four quantities)

e the Rietveld and Pawley (or Le Bail) y ? functions
evaluated over (a) full profile and (b) Bragg peaks
only (two quantities)

e the expected and weighted integrated intensity
R-factors and associated y * (three quantities)

These quantities together give an indication of how
well the profile data are fitted using (a) only the unit
cell, peak shape and other profile parameters
(Pawley/Le Bail quantities) and (b) a structural model
(Rietveld quantities). The quantities associated with the
integrated intensities allow a broad comparison to be
made with single crystal results.

As a final point in the discussion of R-factors, it is
worth noting that while expected Rietveld R-factors
will always improve with additional counting time, ¢,
(indeed it is straightforward to show from Eq. (2)
that p . 1/./7) the weighted profile R-factor bottoms
out at a constant value that does not improve with time.
This happens because the model cannot fit the data any
better and it is systematic errors that are dominating the
misfit. Indeed, David and Ibberson have shown that
counting times are often an order of magnitude longer
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than necessary and that most datasets are probably
over-counted—these conclusions corroborate earlier
work by Baharie and Pawley [5,6].

3. The Cumulative )’ Distribution

In the previous section, we showed that the Rietveld
x * function was a good measure of the quality of fit to
a powder diffraction pattern. Examining, Eq. (4), it
is clear that y ? is the weighted sum of the squares of
the difference between observed and calculated
powder diffraction patterns. An auxiliary plot of the
"difference/esd" underneath a fitted powder diffraction
pattern gives a good idea of where the pattern is fitted
well and where it is fitted poorly. Figure 1a shows the
fitted diffraction pattern for cimetidine collected on
station 2.3 at Daresbury. From the "difference/esd"
plot, regions of misfit can clearly be seen around some
of the strongest Bragg peaks between 22° and 24°.
However, the "difference/esd" plot only gives a qualita-
tive impression of how poor the fit is, even when the
plot of the diffraction pattern is expanded (Fig. 1b). To
assess the impact of a Bragg peak or a region of the
diffraction pattern on the overall fit to the data, we need
to assess the cumulative impact over that region. This
can be achieved by plotting the cumulative chi-squared
function which is the weighted sum of the squares of
the difference between observed and calculated powder
diffraction patterns up to that point in the diffraction
pattern. The cumulative chi-squared function at the nth
point in the diffraction pattern is given by

2 =ﬁwl. (3, —M,) /(N=P+C).

i=1

®)

Examination of Fig. 1c shows that this function gives
a clear indication of where the principal areas of misfit
are in the powder diffraction pattern of cimetidine. The
region from 22° and 24° is indeed the worst area of
profile fit in the powder diffraction pattern. Around one
third of the total y* value is attributable to this
small region. Moreover, the first half of the pattern
contributes to =17/19 =90 % of the total misfitting.
The cumulative chi-squared plot clearly highlights the
problems in fitting the cimetidine data and provides
pointers to improving the fit to the data and hence
obtaining an improved more accurate structural model.
Indeed, there are three directions that we can take to
improve the quality of profile fitting:
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Fig. 1. Observed and calculated diffraction pattern of cimetidine. Tick marks indicate the positions of Bragg peaks while
the lower panel graph shows the difference/esd (the dotted lines represent £3 o (a) the full diffraction pattern (b) expanded
range between 20° and 30° highlighting the region of major misfitting (c) the full diffraction pattern along with the
cumulative chi-squared distribution.
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Fig. 1. Observed and calculated diffraction pattern of cimetidine. Tick marks indicate the positions of Bragg peaks while
the lower panel graph shows the difference/esd (the dotted lines represent +3 o (a) the full diffraction pattern (b) expanded
range between 20° and 30° highlighting the region of major misfitting (c) the full diffraction pattern along with the

cumulative chi-squared distribution—continued.

redo the experiment to count for shorter times
at low two-theta values and for longer at higher
two-theta values. This will reduce the cumulative
x* contribution in the 22° and 24° region and
up-weight the well-fitted high angle data (see
Sec. 4.1).

develop an improved model to describe the dif-
fraction pattern—a good example of this might
be the inclusion of anisotropic line broadening.

downweight the regions of misfit if it proves
difficult to obtain a simple model. (In the 22° and
24° region, the misfitting may occur as a con-
sequence of disorder diffuse scattering—most
codes do not include this effect.) In such cases,
downweighting the misfitting points appropriate-
ly will lead to improved, less biased structural
parameters (see Sec. 5.1 and Ref. [7]).
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4. Assessing the Impact of Specific
Regions of a Powder Diffraction
Pattern

In the previous section, we discussed global meas-
ures of the quality of a Rietveld fit to a powder diffrac-
tion pattern. Ideally, we would like to be able to go
further and devise an optimal methodology for collect-
ing diffraction data. What parts of a powder diffraction
pattern have the maximum impact on improving the
quality of a crystal structure refinement? What parts of
a diffraction pattern, for example, contribute most to
the precise determination of anisotropic displacement
parameters? The intuitive answer is that high angle
reflections will be the most important but peak overlap
will reduce this impact. In fact, both low and high
angles regions (but, to a lesser extent, intermediate
regions) are generally important. The counterintuitive
importance of the low angle reflections results from the
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correlation of anisotropic displacement parameters
with the scale factor. How does one then assess the
impact of a single point in a diffraction pattern on the
precision of a particular structural parameter? Prince
and Nicholson showed for single crystal diffraction that
the impact of individual reflections may be assessed
statistically using standard least squares analysis [8].
Their procedure is easily extended to powder diffrac-
tion data [9].

The covariance matrix, V, obtained from Rietveld
analysis is the best measure of the precision and corre-
lation of the refined parameters, p,, j = 1, . . ., N, from
a powder diffraction pattern containing N, points; x;, y;
and e, are, respectively, the position profile value and
estimated standard deviation of the ith point in the
pattern which is modelled by a function value, M,. The
covariance matrix, V, is the inverse of the Hessian
matrix, H, which may be expressed as H=A4"wA
where the elements of 4 are 4, = dM,/ dp; and w is the
weight matrix which is usually diagonal with elements
w, = 1/0?. Forming the matrix Z with elements
Z;=(1/0,) OM, / dp; means that the Hessian matrix may
be written as H = Z "Z. From this Z matrix, the projec-
tion matrix, P, may be formed from the equation
P=2Z(Z"Z)"'Z" [8]. This matrix, although not often
discussed in least squares analysis, has a number of
important properties. Most notably, the on-diagonal
element, P,, is the leverage of a data point and has a
value between zero and one. A high leverage means that
a data point plays an important role in the overall model
fitting and vice-versa. There is, however, another
significant quantity for the analysis of the variance of a
particular parameter.

Consider the impact on a particular element V,; of the
covariance matrix if the ith data point is collected for a
fraction ¢; longer. The Hessian matrix is modified as
follows: H' = H+ o;z'z where the row vector z has
elements z = (1/0)) dM,/ dp; . Since the Hessian and
covariance matrices are the inverses of each another,
the change in the covariance matrix may be shown
to be

V' =V —-o,(Vz"zV) /(1 +0,2"Vz) )

This equation may be simplified when it is recog-
nised that z"Vz = P,. Putting the vector ¢ = zV implies
that (Vz'zV), = (zV)"(zV), = 1, and thus, as long as o is
small, all the elements of the parameter covariance
matrix are altered as follows:

V=V, —o,(tt)/(1+oP) =V, —ott.

il i

(10)
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The product ¢, is thus a measure of the impact of the
ith point on element rs of the covariance matrix. In
particular, tjz. is a measure of the importance of the ith
data point on the jth parameter; a large value of tjz.
leads to a substantial reduction in the parameter
variance and a concomitant improvement in precision.
The quantity

w1 oM,

63()=Y ——"V,

11
s=1 o-i aps ( )

is perhaps more informative than its square as it
provides information about the sense of the ith data
point contribution to the covariance terms. Its relation-
ship to the covariance matrix is essentially identical
to the relationship between the residual (observed-
calculated)/(estimated standard deviation) and the
overall y? goodness of fit. A specific example' of the
use of the fmatrix to determine the significance of
different parts of a powder diffraction is discussed in
Ref. [9].

4.1 Variable Counting Time Protocols for X-Ray
Powder Diffraction Data Collection

The use of #(i) as a diagnostic for determining accu-
rate structural parameters depends on whether we
believe that the errors in our data are well understood
or not. If we are sure that the sources of the errors in our
data are all known—the simplest case is the belief that
the only sources of uncertainty are from counting sta-
tistics—then we will target those points in the diffrac-
tion pattern that have the maximum values of #,(i) since
these will be the points that reduce the estimated stan-
dard deviations of a parameter by the greatest amount.
It is intuitively obvious that we will get the most pre-
cise assessment of the area of a peak by counting for
longest at the top of the peak and that we will get the
best indication of the peak position by counting at the
points of maximum gradient change on the peak. These
conclusions, however, do depend on us knowing with
complete confidence what the peak shape is. This point,
in turn, means that we can only use these maximum
impact points if we not only know that source of all our
experimental errors but also have complete confidence
in our model. While this may often be true for neutron
powder diffraction data, it is generally not the case for

! This example concerns the analysis of orientational order in Cg,
from neutron powder diffraction data. The r-matrix is used to show
that the deviations from spherical symmetry of the orientation distri-
bution function of Cg, in the high temperature phase can be well
modelled using neutron powder diffraction data and that powder
averaging is quite different from spherical averaging.
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x-ray diffraction and patterns such as those shown for
cimetidine in Fig. 1 are the norm rather than the excep-
tion. If we were entirely confident about the sources of
misfit in our low-angle diffraction data then we would
count for longer at low angles since this offers the
prospects of reducing the terms in the covariance
matrix by the largest amount. If we are uncertain about
our data errors and the sufficiency of our model then we
have to take an alternative approach to the problem that
is effectively opposite to the argument when the errors
are known. If we have an intense Bragg peak at low
angles and are uncertain about our errors then 7(7) tells
us that the variance terms will reduce substantially but
unfortunately in an incorrect way. We will have a more
precise result but a less accurate one. Indeed, as the
variance terms reduce, we will be faced with a result
that may be increasingly more precise while at the same
time decreasingly accurate. To obtain accurate results
in the face of uncertain errors, our best approach is to
distribute the errors as evenly as possible across all the
Bragg peaks. This means counting for substantially
longer at higher angles. There are two published
methods for deciding how to vary the counting time
across the diffraction pattern [1,4,10]. Both approaches
lead to essentially identical protocols and also both lead
to the important conclusion that higher angle parts of
the diffraction pattern may have to counted for often
more than 30 times longer than low-angle regions. In
order to explain the rationale for longer counting times,
we follow the approach of David [4] and Shankland,
David and Sivia [10] that was developed with a view to
improving the chances of structure solution. The ration-
ale is based upon one of the central formulae of Direct
methods, the tangent formula which determines
the probable relationship between the phases, ¢ (h),
¢ (k) and ¢ (h—k):

2:32 E()E (k)E (h-k)sin[ (k )+ ¢ (h-k)]

tan[@(h)] = =~ -

20.3/2

3 2

3/
2

E(R)E (k)E (h-k)cos[@ (k )+ ¢ (h-k)]
(12)

where o, = i[ S

i=1

factor, E(h), is related to the integrated intensity, / [(h)] =

h|=0)]"and the normalised structure

J()|F (h)?| by the equation |E(h)|” = I(h)/ z g (h). 2

2

F(h)= ig‘/(h)exp(th- r) and g (h)= f (h)exp(-B,,/4d %)

Jj=1
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We simply require that the fractional error in E(h)
should be independent of where the reflection is in the
diffraction pattern. This, in turn, leads to the fact that all
components of the summations in the tangent formulae
will on average be determined with equal precision.
When we collect a powder diffraction pattern, the
Bragg peak area, A(h), is not the integrated intensity
itself but is modified by geometrical, absorption and
extinction terms. If we know that absorption and
extinction effects are severe, then we should include
their effects in evaluating the variable collection strate-
gy. However, if we work under the simpler assumption
that these effects are small, then 4 (k) = LI (h), where
L, is the Lorentz polarisation correction and we will
count normalised structure factors, £ (h), with equal
precision across a powder diffraction pattern if we off-
set the combined effects of L, the form-factor fall-off
and the Debye-Waller effects of thermal motion, i.e.,

1(20) <1/ L (26)Y g’(26) where we have explicitly

used a 2-theta dependence. For the case of Bragg-
Brentano geometry on a laboratory-based x-ray powder
diffractometer, this becomes

(sin@sin20)(1 +cos>2¢x)
(1 +cos’20.cos *26 )fm2 (6 )exp (—ZB 5in 0/ 4 2)
(13a)

1(0) o<

where f,, is a representative atomic scattering factor
(e.g., carbon), B,, is an estimated overall Debye-Waller
factor, A is the incident wavelength and 2o is the mono-
chromator take-off angle. For the case of Debye-
Scherrer geometry on a synchrotron x-ray powder
diffractometer, this simplifies to

10 o< (sinBsin0)/[ £ (6 Jexp (2B,,sin6/1%)].  (13b)
The variable counting time scheme for these two
typical diffractometer settings are shown in Fig. 2. Both
laboratory and synchrotron variations show that the
counting times at intermediate angles should be sub-
stantially longer than at low-angles and extreme
backscattering. Interestingly, the 2-theta variations of
the variable counting time schemes are dominated as
much by the Lorentz polarisation correction as the
form-factor fall-off and Debye-Waller variation. Indeed
at low-angles, the principal effects are associated with
the Lorentz polarisation correction. All three effects
combine together to create a substantial variation in
counting time as a function of 2-theta. Figure 3 com-
pares the constant counting time pattern (Fig. 3a) com-
pared with the raw counts using the variable counting
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Fig. 2. Variable counting time schemes for both laboratory and
synchrotron diffractometers. The dilation is normalised to be unity
for 26 =10°.

time protocol (Fig. 3b) for the drug compound,
chlorothiazide. The Bragg peaks at high angle appear
to be of the same intensity as the low-angle reflections
—all the Bragg peaks in this diffraction pattern have
been reliably determined. This proved crucial in the
successful structure solution of the compound using
Direct methods as large numbers of reliable triplet
phase relationships could be formed [10]. A further
indication of the importance of using a variable count-
ing time scheme can be seen from the analysis of the
cumulative chi-squared distribution for the refinement
of the structure of famotidine (Figure 4). The overall
chi-squared is low (~1.6) showing that a good fit has
been achieved over the full diffraction pattern.
Moreover, the cumulative chi-squared distribution
forms an essentially straight line over the full pattern
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Fig. 3. Raw and normalised counts for synchrotron powder diffraction data of chlorothiazide. The inset shows the variable

counting scheme used.
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2 theta

Fig. 4. The cumulative chi-squared distribution for famotidine overlaid upon the synchrotron powder diffraction pattern.
The benefits of the variable counting time scheme are clear as the impact of all regions of the pattern are similar.

indicating that all regions are fitted equally well and, as
a corollary, that the errors are also even distributed over
all the reflections. This is an important point as it
follows from this that the effects of systematic errors
must be substantially diminished over, for example, the
case of cimetidine (see Fig. 1c).

5. Beyond Least-Squares Analysis

In the previous sections, we discussed from a statis-
tical point of view how to assess the limitations of a
Rietveld analysis and overcome these problems
through the use of, for example, variable counting time
protocols. What happens when we still have areas of
the diffraction pattern that are not fitted well despite
performing a careful experiment? If the misfit results
from additional scattering from an unattributed impuri-
ty phase then we can formulate this within the context
of Bayesian probability theory and develop an appro-
priate refinement procedure. If we have no real idea
what has caused the misfitting—it may, for example, be
lineshape effects, imperfect powder statistics or diffuse
scattering—then we have to develop a catch-all proba-
bilistic procedure for addressing this problem. If the
misfitting involves a small proportion of the data, then
we can develop a robust method of improving the accu-
racy of our results. At the same time, however, our
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precision decreases because we have allowed the possi-
bility of more sources of uncertainty than in a standard
least-squares analysis. The approach used in this paper
follows that of Sivia who aptly discussed the problem
as one of "dealing with duff data" [11].

5.1 Dealing With Duff Data

When we observe misfitting in a powder diffraction
pattern, our first assumption is that the structural model
that we have used to describe the data is not quite opti-
mised. However, we often find that despite our best
attempts, the data never fit well across the full diffrac-
tion pattern and we are left with regions of misfit that
may well be introducing systematic errors into our data.
If we understand the source of this misfit—it may for
example be an unattributable impurity phase—then we
may be able to develop a suitably specific maximum
likelihood refinement protocol. However, when we are
unable to postulate a suitable explanation for misfitting,
then we must develop a very general probabilistic
approach, as has been done previously [11,12].If we
take a standard point in our diffraction pattern that has,
say, 400 counts we know from Gaussian counting
statistics that our expected standard deviation will be
around 20 counts. If we proceed through to the end of
our least squares analysis with this assumption, then we
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are making a very definite statement about our errors.
We are saying categorically that we know all the
sources of our errors and that they results only from
counting statistics. Put in these terms, this is a bold
assertion. Fortunately, in most Rietveld analyses (and
particularly in the area of neutron powder diffraction)
this is a fair statement to make. However, we will show
that even with good refinements, we can improve our
accuracy (at the expense of some precision) by using a
more robust algorithm.

One of the things that we can say for sure when we
have collected a point in our diffraction pattern with
U =400 counts is that the uncertainty in our measure-
ment cannot be less than 20 counts—but it could be
more. We must generate a probability distribution for
our uncertainty—after all, we are no longer certain
about our uncertainties. A good distribution, because it
has the properties of scale invariance, is the Jeffrey's
distribution, 1/0, for all values o 2\/,17 . This proba-
bility distribution for our uncertainty is shown in
Fig. 5a. The corresponding likelihood for the data is
obtained by integrating over this distribution

p(Dlp,o=\Ju)=

1 1
b(o ———(D-w)?*\|d
%J_ﬁpro( - mexp[ o u)] c
(14)

which leads, not to a Gaussian likelihood but an error-
function distribution

p(D|u.o 20,,) (D"‘)}. (15)

1
2D ) ’”f[ G2

This is shown in Fig. 5b. The negative log-likelihood,
which gives a direct comparison with the least-squares
distribution, is shown in Fig. 5c. For large positive and
negative deviations between observed and calculated
data, the penalty no longer follows a quadratic form but
rather a logarithmic distribution. Large deviations have
less impact on this robust modified y * function while
small deviations are treated just like the standard least-
squares (albeit with a shallower distribution arising
from our poorer state of knowledge about our uncer-
tainties).

We illustrate the use of this robust statistic for the
case of a high resolution x-ray powder diffraction
pattern of urea collected on BM16 at the ESREF,
Grenoble. Standard least-squares analysis leads to a
satisfactory weighted profile y? of ~3.7. However,
examination of the cumulative y ? plot (Fig. 6), shows
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Fig. 5. Robust least squares. (a) the probability distribution func-
tion associated with using the counting statistics error as a lower
uncertainty bound and a scale-invariant Jeffrey's prior to represent
the degree of ignorance of other errors, (b) the standard least-
squares likelihood (dotted line) compared with the robust likelihood
(dashed line) derived from the probability distribution function
shown in Fig. 5a, (c) the negative log-likelihood (or chi-squared
equivalent) for standard least-squares (dotted line) and robust statis-
tics (dashed line).

that almost a quarter of the misfit is associated with
the strongest Bragg peak. This could result from
preferred orientation, detector saturation or particle
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Fig. 6. Comparison of the cumulative standard chi-squared function with the cumulative robust chi-squared function for
urea. The synchrotron powder diffraction pattern of urea is shown in the background.

statistics—we don't know. The cumulative robust y >
distribution, on the other hand, contains no such bias
towards this single peak. Indeed, the linear variation of
the cumulative robust y * distribution across the full
pattern gives a reassuring degree of confidence to this
modified least-squares approach. However, a compari-
son of the structural parameters for the conventional
and robust least-squares approaches with single crystal
data convincingly shows the benefits of the robust
metric which automatically downweights bad data.
With conventional least-squares, the results are good
and the estimated standard deviations are small.
However, nine of the fourteen structural parameters are
more than four standard deviations different from their
single crystal counterparts indicating that the accuracy
of the parameters obtained from the least squares analy-
sis does not measure up to their precision. On the other
hand, only one of the structural parameters from the
robust analysis is more than 4 o away from the corre-
sponding single crystal value. The parameters changes
are modest between least-squares and robust analyses.
However, the differences are real and the improve-
ments in precision when benchmarked against the
single crystal parameters are significant. While it is
dangerous to extrapolate from a single example, the
underlying statistical framework is sound and suggests
that, when significant jumps are found in a cumulative
chi-squared plot, then a robust analysis is worthwhile.
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5.2 Refinement in the Presence of Unattributable
Impurity Phases

What do you do when you want to perform a
Rietveld analysis of a particular material but have a
substantial impurity phase and despite all your best
attempts you can neither remove it from your sample
nor index it from your diffraction pattern?
Conventional wisdom would state that your chances of
obtaining unbiased structural parameters are poor and
that the best you can do is to manually exclude the
offending impurity peaks. Standard Rietveld programs
that are based upon a least-squares refinement
algorithm cannot cope in an unbiased manner with an
incomplete model description of the data. This is just
the situation where Bayesian probability theory can
come to the rescue. We can ask the question, "How do
I perform a refinement on a powder diffraction pattern
when I know that there is an impurity phase present but
have no idea what that impurity phase may be?" This
question is equivalent to stating that my diffraction
pattern contains a component that I can model (known
phases + background) and an additional positive,
unknown contribution. It turns out that enforcing the
positivity of the unknown component as an additive
contribution is sufficient to produce excellent results

[71.
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The mathematical development of these ideas has
been presented elsewhere and results in a modified j 2
goodness of fit function that is shown in Fig. 7 [7,13].

T T T
40 | R -+ g
= ,‘.standard quadratic chi-squared
To20+ + -
- robust chi-squared
0 l = ! !

-10 -5 ] 5 10 15
(obs—calc)/esd

Fig. 7. The modified robust goodness of fit function (solid line)
compared with the standard quadratic least-squares function.

For observed data that are less than the model function,
the new goodness of fit behaves essentially identically
to the standard y * This is to be expected since such
points are unlikely to be associated with an impurity
contribution. On the other hand, when the observed
data value is substantially greater than the fitted model
value, then the new goodness of fit brings a substantial-
ly smaller penalty (the function varies logarithmically)

than the quadratic behaviour of the standard y . Again
this is just what is required to minimise the impact of
any impurity phase. Note also that the curvature of the
new goodness of fit is shallower than the standard y >
This means that quoted standard deviations will be
higher for refinements using the new goodness of fit.
This is to be expected as the allowance for an impurity
phase brings a greater uncertainty into the model
parameter values.

Diffraction patterns of yttria and rutile were collect-
ed on HRPD at ISIS. Results from the 5 % yttria: 95 %
rutile are shown in Fig. 9. (The fitted diffraction pattern
of pure yttria is shown in Fig. 8 for comparison.) In
order to accentuate the difference between the new
goodness of fit function and standard least-squares
analysis, we have chosen to refine the minority yttria
phase treating the majority phase as the impurity (see
Fig. 9a). The excellent fit to the data for the modified y
is shown in Fig. 9b where we have graphically down-
weighted the observed points, which contribute least to
the goodness of fit. This emphasises what the algorithm
is effectively doing—Ilarge positive (obs-calc)/esd
values are essentially ignored. In effect, the algorithm
is optimally excluding those regions that do not
contribute to the model. The relative calculated peak
intensities agree very well with the results for pure
yttria (Fig. 8). Least squares analysis (Fig. 9¢) produces

60 T T T T T T T T T T T T
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Q
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Fig. 8. The observed and calculated diffraction patterns for pure yttria determined on HRPD at ISIS.
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Fig. 9. Observed and calculated diffraction patterns for the composition 5 % yttria : 95 % rutile: (a) robust analysis showing the full observed
data range (the grey scale described in the text not used in this figure); (b) expanded region highlighting the successful robust refinement
(the down-weighting grey scale is used in this figure); (c) the least-squares analysis showing the poor agreement between the observed and
calculated patterns.
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a completely different result—all points are considered
with no downweighting for possible impurities. The
first obvious effect is that the refined background is too
high. The reason for this is obvious since the strong
impurity peaks lift up the model fit. The relative peak
intensities are however also very different from the
correct values suggesting that the refined structural
parameters are substantially in error. This is indeed
the case and is borne out by analysis of the refined
zirconium and oxygen coordinates, which are shown
graphically in Fig. 10 as a function of yttia content. We
briefly consider the other refined parameters (a fuller
analysis is given in Ref. [7]). The scale factor is correct
within estimated standard deviation (esd) for the robust
analysis but behaves wildly for the standard least
squares, exceeding 1000 % for 25 % yttria content. The
least-squares analysis of the lattice constant also
becomes increasingly unreliable as the refinement
locks into peaks associated with rutile as well as yttria.

097 - ? i _

SEEEREERS SARE A,

0.86 - -
S
1
095 - .
0.94 - .
\ I I I
0 20 40 60 80 100
Y,04 phase percentage
a
T T T T
0.4 | .
"'{'"}"E"'i"'!"i"i‘"I—--I"'l"I--l'--;---:--g--!"ﬁ"!"'
S 035t i .
x § § [3
iy
0.3 - -
f
1 1 1 1
0 20 40 60 80 100

Y,03 phase percentage

b

121

} T T T T T
0.18 % B
8 H
X
0.16 =
3 3
3
0.14 i B
1 1 1 1
o} 20 40 60 80 100
Y,05 phase percentage
C
T T T T
0.4 m oo oo g u
o
g ;
"T'}mi"'i"i"!"i"!"i"'“'"f'i"""""”'"""
g
N
3
0.35 - -
[
§
1 1 1 1
o} 20 40 60 80 100
Y,05 phase percentage
d

Fig. 10. The refined atomic coordinates of yttria plotted as a func-
tion of yttria composition. Open circles and filled squares correspond
to the least-squares and robust analyses, respectively. (a) The yttrium
x coordinate. (b), (c), (d) The oxygen x, y, and z coordinates. The
dotted lines correspond to the correct values obtained from least-
squares refinement of the pure-yttria diffraction pattern.

On the other hand, the lattice constant from the robust
refinement is satisfyingly stable; the esds increase as
the yttria content decreases (the 5 % esd is some five
times larger than the 100 % value) but all results lie
within a standard deviation of the correct result.

5.3 Summary of Maximum Likelihood
Refinement Algorithms

Least-squares Rietveld analysis is the best and least-
biased method of structure refinement from a powder
diffraction pattern when the data can be fully modelled.
However, when there is an unmodelled contribution in
the diffraction pattern, least-squares analysis gives
biased results. In the impurity phase example discussed
in this contribution, significant deviations from the
correct parameter values occur when there is as little as
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a 10 % impurity contribution. At higher impurity
levels, least-squares analysis is completely unreliable.
These problems may, however, be overcome if the exis-
tence of an unknown impurity contribution is built into
the refinement algorithm. While it might seem to be a
logical inconsistency to build in information about an
unknown contribution, Bayesian probability theory
provides a framework for doing just this. Only two
broad assumptions are necessary to derive an appropri-
ate modified probability distribution function. These
are (i) that the impurity contribution must be intrinsi-
cally positive and (ii) that its magnitude, 4, is unknown
and thus best modelled by a Jeffreys’ prior, given by
p(A|1)e< 1/4 for A>0 and p(4 | I) =0 for A <0. This
produces a modified “y*’ function (see Fig. 1) that
effectively excludes the impact of impurity peaks.

The results discussed in briefly in this contribution
and more extensively in Ref. [13], show that the
improvement over conventional least-squares analysis

is dramatic. Indeed, even in the presence of very sub-
stantial impurity contributions (see Fig. 4) the refined
structural parameters are within a standard deviation of
their correct values.

It must, however, be stated as a final caveat that care
should be taken with this approach and the use of an
algorithm that can cope with the presence of impurities
should be seen as a last resort. Indeed, every effort
should be made to determine all the phases in a sample.
It is much more desirable to include the impurity phase
in a standard Rietveld refinement.
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Table 1. Structural parameters obtained for urea from single crystal results (column 2) and high-resolution powder diffraction data. Two separate
analyses were performed on the powder diffraction data. Results from a standard least-squares analysis are shown in column 2 and compared with
the single crystal results in column 3. The results from the robust analysis are listed in column 5 and compared with the single crystal results in
the final sixth column. The shaded cells indicate discrepancies that are beyond 4 &

SXXD Least squares LS-SXXD Robust R-SXXD
Cl z 0.3328(3) 0.3236(9) -0.0092(10) 0.3319(13) -0.0009(14)
Ol z 0.5976(4) 0.6013(5) 0.0037(6) 0.5984(7) 0.0008(8)
N1 x 0.1418(2) 0.1405(3) -0.0013(4) 0.1423(7) 0.0005(7)
z 0.1830(2) 0.1807(5) -0.0023(6) 0.1813(7) -0.0017(7)
Cl Uy, 0.0353(6) 0.0348(20) -0.0005(20) 0.0329(40) 0.0024(40)
Uss 0.0155(5) 0.0396(30) 0.0241(30) 0.0413(40) 0.0258(40)
U 0.0006(9) 0.0205(30) 0.0199(30) 0.0128(40) 0.0122(40)
01 Uy, 0.0506(9) 0.0749(16) 0.0243(18) 0.0617(30) 0.0111(30)
Uss 0.0160(6) 0.0080(14) -0.0080(15) 0.0090(20) -0.0070(20)
U 0.0038(18) 0.0052(20) 0.0014(30) -0.0011(35) -0.0049(35)
NI Uy, 0.0692(6) 0.0627(15) -0.0065(18) 0.0697(25) 0.0005(25)
Uss 0.0251(4) 0.0460(22) 0.0211(22) 0.0365(30) 0.0114(30)
Up -0.0353(7) -0.0252(18) 0.0101(20) -0.0361(30) -0.0008(30)
Ujs -0.0003(3) -0.0015(11) -0.0012(12) -0.0029(15) -0.0026(15)

122




Volume 109, Number 1, January-February 2004
Journal of Research of the National Institute of Standards and Technology

[10]

(1]

[12]
[13]

References

I. C. Madsen and R. J. Hill, J. Appl. Cryst. 27, 385-392 (1994).
W. L. F. David, Accuracy in Powder Diffraction-II, Abstract
P2.6 NIST Special Publication 846, 210, NIST, Gaithersburg,
MD, USA (1992).

A. Antoniadis, J. Berruyer, and A. Filhol, Acta Cryst. A46,
692-711 (1990).

W. L. F. David (submitted to J. Appl. Cryst.).

W. 1. F. David and R. M. Ibberson, Accuracy in Powder
Diffraction-III, Abstract P2.6 (2001).

E. Baharie and G. S. Pawley, J. Appl. Cryst. 16, 404-406
(1983).

W. 1. F. David, J. Appl. Cryst. 34, 691-698 (2001).

E. Prince and W. L. Nicholson, Structure and Statistics in
Crystallography, A. J. C. Wilson, ed., Adenine Press (1985)
pp. 183-195.

W. L. F. David, R. M. Ibberson, and T. Matsuo, Proc. Roy. Soc.
London A442 129-146 (1993).

K. Shankland, W. I. F. David, and D. S. Sivia, J. Mater. Chem.
7, 569-572 (1997).

D. S. Sivia, Dealing with Duff Data, in Proceedings of the
Maximum Entropy Conference, M. Sears, V. Nedeljkovic,
N. E. Pendock & S. Sibisi, eds., Port Elizabeth, South Africa:
NMB printers (1996) pp. 131-137.

G. E. P. Box and C. G. Tiao, Biometrika 55, 119-129 (1968).
W. L. F. David and D. S. Sivia, J. Appl. Cryst. 34, 318-324
(2001).

123

About the author: Bill David is currently the Senior
Research Fellow at the ISIS spallation neutron source
at the Rutherford Appleton Laboratory and is also the
Associate Director of Research Networks for CLRC.
His research career spans over 25 years from his early
work on ferroelastic materials in the Clarendon
Laboratory, Oxford, to his current research in the fields
of neutron and x-ray scattering, structural physics, and
crystallography.



